AMENDMENT TO

RULES COMMITTEE PRINT 118–10 OFFERED BY MR. DONALDS OF FLORIDA

At the end of subtitle C of title XVIII, add the following:

1	SEC. 1859. NATIONAL STRATEGY FOR UTILIZING MICRO-
2	REACTORS TO ASSIST WITH NATURAL DIS-
3	ASTER RESPONSE EFFORTS.
4	(a) In General.—The President shall, in consulta-
5	tion with the Administrator of the Federal Emergency
6	Management Agency, the Secretary of Energy, the Chief
7	of the National Guard Bureau, the Chief of Engineers of
8	the Army Corps of Engineers, the Assistant Secretary of
9	the Office of Nuclear Energy of the Department of En-
10	ergy, the Under Secretary of Defense for Research and
11	Engineering, the Chairman of the Nuclear Regulatory
12	Commission, and the Deputy Assistant Secretary for the
13	Office of Reactor Fleet and Advanced Reactor Deployment
14	of the Department of Energy, develop a national strategy
15	to utilize microreactors to assist with natural disaster re-
16	sponse efforts.
17	(b) Submission to Congress.—Not later than 1
18	vear after the date of enactment of this Act, and every

1	2 years thereafter, the President shall submit to the ap-
2	propriate congressional committees a comprehensive na-
3	tional strategy developed under subsection (a).
4	(c) Contents of National Strategy.—A national
5	strategy developed under subsection (a) shall include the
6	following:
7	(1) Evaluation of existing diesel deploy-
8	MENT EFFORTS.—An assessment of the effectiveness
9	of utilizing diesel generators to assist with natural
10	disaster response efforts, which such assessment
11	shall include—
12	(A) information on the current use of die-
13	sel generators to assist with natural disaster re-
14	sponse efforts, including—
15	(i) the prevalence of deploying diese
16	generators around the United States as the
17	sole power source to assist with natural
18	disaster response efforts;
19	(ii) the average number of diesel gen-
20	erators deployed in natural disaster re-
21	sponse efforts based on the type of natural
22	disaster, the severity of the natural dis-
23	aster, and the location of the natural dis-
24	aster;

1	(iii) where Federal, State, and local
2	governments store diesel generators;
3	(iv) how diesel generators are trans-
4	ported to areas affected by a natural dis-
5	aster;
6	(v) any logistical concerns with refuel-
7	ing diesel generators over an extended pe-
8	riod of time;
9	(vi) the potential to utilize accessory
10	equipment that is traditionally connected
11	to diesel generators to help provide elec-
12	tricity to the area in need; and
13	(vii) any other information that is
14	necessary to understand the role of diesel
15	generators used to assist with natural dis-
16	aster response efforts;
17	(B) how the effect on the environment of
18	utilizing diesel generators to assist with natural
19	disaster response efforts compares to the esti-
20	mated effect on the environment of utilizing
21	microreactors to assist with the same natural
22	disaster response efforts; and
23	(C) the concerns to public safety when de-
24	ploying diesel generators in natural disaster re-
25	sponse efforts.

1	(2) Goals, objectives, and priorities.—A
2	comprehensive, research-based, and long-term dis-
3	cussion of goals, objectives, and priorities for uti-
4	lizing microreactors instead of diesel generators to
5	assist with natural disaster response efforts.
6	(3) Department of defense analysis.—An
7	analysis of—
8	(A) how the efforts of the Department of
9	Defense to develop microreactor technology for
10	operational uses could be used to inform the de-
11	velopment of microreactors to assist with nat-
12	ural disaster response efforts, including any
13	recommendations and additional direction that
14	may be necessary for such expedited deploy-
15	ment;
16	(B) how the Department of Defense can
17	most effectively translate and implement the
18	lessons learned from its operations in the field
19	to assist with natural disaster response efforts,
20	including how operations in the field related to
21	microreactors can be used to answer broad
22	questions for the nuclear industry and for fu-
23	ture issues relating to fuel reliability, energy
24	supply chain issues, reducing diesel convoy cau-

1	salities, and supporting other global humani-
2	tarian needs; and
3	(C) whether a demonstration program for
4	microreactors is needed prior to deploying
5	microreactors for natural disaster response ef-
6	forts, based on the analysis provided by sub-
7	paragraphs (A) and (B).
8	(4) RECOMMENDATIONS FOR THE NUCLEAR
9	REGULATORY COMMISSION.—Recommendations on
10	how the Nuclear Regulatory Commission can work
11	with other Federal agencies to expedite—
12	(A) the approval of designs for microreac-
13	tors; and
14	(B) issuing licenses for the utilization,
15	transportation, and operation of microreactors
16	in rapid deployment scenarios, such as natural
17	disaster response efforts.
18	(5) Utilizing feasibility studies.—An
19	analysis of available academic literature and studies,
20	including site feasibility studies, to identify high risk
21	areas that are prone to natural disasters that should
22	be prioritized during emergency planning.
23	(6) Strategic considerations when de-
24	PLOYING MICROREACTORS.—An assessment of var-
25	ious strategic considerations to improve the effi-

1	ciency, timeliness, and cost-effectiveness of deploying
2	microreactors to assist with natural disaster re-
3	sponse efforts, including—
4	(A) whether the Department of Defense,
5	the Federal Emergency Management Agency,
6	or any other government entity should build,
7	own, or operate microreactors that are used to
8	assist with natural disaster response efforts, in-
9	cluding whether it would be viable to lease
10	microreactors from private industry and wheth-
11	er it would be viable to facilitate public-private
12	partnerships to find cost effective options to
13	utilize microreactors for natural disaster re-
14	sponse efforts;
15	(B) the recommended number of individ-
16	uals charged with the usage, maintenance, and
17	upkeep of the microreactors, including the rec-
18	ommended qualifications, training requirements,
19	availability requirements, and oversight respon-
20	sibility of such individuals;
21	(C) the number of microreactors needed,
22	initially and in the long-term, to effectively re-
23	spond to a natural disaster based on past nat-
24	ural disaster trends and the specific geographic
25	location of the area;

1	(D) where microreactors used to assist
2	with natural disaster response efforts would be
3	stored, including information on—
4	(i) how different microreactor storage
5	locations may affect swift and economically
6	feasible natural disaster response efforts;
7	(ii) the feasibility of utilizing already-
8	built facilities instead of constructing new
9	microreactor storage facilities;
10	(iii) the cost of constructing new
11	microreactor storage facilities;
12	(iv) how to properly store the micro-
13	reactor when not being utilized for natural
14	disaster response efforts; and
15	(v) potential storage locations, such
16	as—
17	(I) the Strategic Alliance for
18	FLEX Emergency Response locations
19	in Memphis, Tennessee and Phoenix,
20	Arizona; and
21	(II) Department of Defense
22	bases;
23	(E) how to maintain a microreactor and
24	replace, store, and dispose of fuel used by a
25	microreactor, including whether public-private

1	partnerships may be used to assist with such
2	maintenance, replacement, storage, and dis-
3	posal;
4	(F) when a diesel generator will suffice in
5	the event of a natural disaster of limited pro-
6	portions, in comparison to utilizing microreac-
7	tors to assist with natural disaster response ef-
8	forts;
9	(G) which States and territories and pos-
10	sessions of the United States that are prone to
11	natural disasters, such as hurricanes, should be
12	prioritized when initially selecting locations to
13	deploy microreactors to assist with natural dis-
14	aster response efforts;
15	(H) the methods, capabilities, and costs as-
16	sociated with transporting microreactors that
17	were or may be impacted by natural disasters,
18	including considerations about transporting new
19	microreactors, in addition to microreactors that
20	have been put to use, and any regulatory or
21	legal issues that may arise during the transpor-
22	tation;
23	(I) any other strategic considerations that
24	should be taken into account before deploying

1	microreactors to assist with natural disaster re-
2	sponse efforts;
3	(J) how to integrate microreactors into ex-
4	isting electrical grids in emergency situations
5	including how grid connection points, microgrid
6	limits, site load limits, existing infrastructure
7	and the standard process for grid interconnec-
8	tions may impact the integration of microreac-
9	tors into existing electrical grid;
10	(K) whether microreactors will be suscep-
11	tible to cyberattacks, including whether autono-
12	mous control will impact the microreactor's
13	cyberattack susceptibility and what systems or
14	microreactor designs would be ideal for com-
15	bating such cyberattacks during a natural dis-
16	aster response effort; and
17	(L) how the weight of a microreactor, com-
18	pared to the weight of a diesel generator, af-
19	fects deploying microreactors and diesel genera-
20	tors to assist with natural disaster response ef-
21	forts.
22	(7) Deployment challenges and bar-
23	RIERS.—An assessment of—

1	(A) the challenges and barriers to deploy-
2	ing microreactors to assist with natural disaster
3	response efforts; and
4	(B) solutions to address each such chal-
5	lenge and barrier.
6	(8) Review of and recommendations for
7	LEGISLATION.—
8	(A) Review.—A review of existing law
9	that can be used to ease the burden of utilizing
10	microreactors to assist with natural disaster re-
11	sponse efforts, including the Robert T. Stafford
12	Disaster Relief and Emergency Assistance Act
13	(42 U.S.C. 5121 et seq.), the Energy Policy Act
14	of 2005 (42 U.S.C. 15801 et seq.), the Atomic
15	Energy Act of 1954 (42 U.S.C. 2011 et seq.),
16	the Nuclear Energy Innovation and Moderniza-
17	tion Act (42 U.S.C. 2215 note), and any other
18	relevant law.
19	(B) RECOMMENDATIONS.—Recommenda-
20	tions for legislation to—
21	(i) assist with—
22	(I) deploying microreactors to as-
23	sist with natural disaster response ef-
24	forts;

1	(II) the maintenance and upkeep
2	of such microreactors; and
3	(III) the initial and long-term
4	storage of such microreactors; and
5	(ii) pay for the activities described in
6	subclauses (I) through (III) of clause (i).
7	(9) Partnerships to enhance natural dis-
8	ASTER RESPONSE EFFORTS.—An assessment
9	about—
10	(A) the current status of any collaboration
11	between the National Guard, Federal Emer-
12	gency Management Agency, and the Army
13	Corps of Engineers during natural disaster re-
14	sponse efforts;
15	(B) the specific roles of each entity speci-
16	fied in subparagraph (A) (disaggregated, in the
17	case of the National Guard, by State and by
18	military department) during a natural disaster
19	response effort, and their respective roles when
20	participating in natural disaster response ef-
21	forts;
22	(C) the current emergency responsibilities
23	of the Department of Energy and the Nuclear
24	Regulatory Commission that relate to deploying

1	microreactors during natural disaster response
2	efforts;
3	(D) the potential opportunity to set up an
4	annual listening group session or consortium to
5	provide all the necessary information needed to
6	deploy microreactors to assist with natural dis-
7	aster response efforts and to ensure a smooth
8	transition from the use of diesel generators to
9	the use of microreactors to assist with natural
10	disaster response efforts;
11	(E) how the Emergency Management As-
12	sistance Compact, consented to by Congress in
13	the joint resolution entitled "Joint resolution
14	granting the consent of Congress to the Emer-
15	gency Management Assistance Compact" (Pub-
16	lie Law 104–321), can be utilized to allow
17	States to allocate their unused microreactors to
18	other States that are in need of microreactors
19	to assist with natural disaster response efforts
20	and
21	(F) how to improve the collaboration be-
22	tween Federal, State, and local government en-
23	tities and private entities when deploying micro-
24	reactors to assist with natural disaster response
25	efforts.

1	(10) Utilizing microreactors to charge
2	ELECTRIC VEHICLES.—Recommendations on how to
3	utilize microreactors as charging stations for electric
4	vehicles in the event of a mass evacuation resulting
5	from a natural disaster, including recommendations
6	on—
7	(A) how to deploy microreactors to charge
8	electric vehicles before an evacuation;
9	(B) the primary transportation corridors
10	that would be used for such a mass evacuation;
11	(C) how many microreactors would be
12	needed to charge electric vehicles during such a
13	mass evacuation, based on the size and popu-
14	lation of the State in which the mass evacuation
15	occurs;
16	(D) the best placement of microreactors
17	throughout the primary transportation corridors
18	to ensure a smooth electric vehicle charging
19	process and subsequent evacuation;
20	(E) any potential public-private partner-
21	ships that would be useful in utilizing micro-
22	reactors to charge electric vehicles during a
23	mass evacuation, including an estimate of the
24	costs that would be associated with establishing
25	these partnerships;

1	(F) how to—
2	(i) transport microreactors to mass
3	evacuation locations along primary trans-
4	portation corridors for purposes of charg-
5	ing electric vehicles; and
6	(ii) pay for such transportation; and
7	(G) any other topic related to subpara-
8	graphs (A) through (F).
9	(11) Deploying microreactors to united
10	STATES TERRITORIES AND POSSESSIONS.—Rec-
11	ommendations on deploying microreactors to terri-
12	tories and possessions of the United States to assist
13	with natural disaster response efforts.
14	(12) Using military equipment with nu-
15	CLEAR CAPABILITIES.—Recommendations on how to,
16	in the event of a natural disaster and when the de-
17	ployment of a microreactor is not timely or ideal for
18	the circumstance, deploy military equipment of the
19	United States with nuclear capabilities, such as nu-
20	clear aircraft carriers and nuclear submarines, to
21	provide temporary electricity to an area severely im-
22	pacted by a natural disaster.
23	(13) Budget Priorities.—A multiyear budget
24	plan that identifies the necessary resources to suc-
25	cessfully carry out the recommendations and imple-

1	ment any lessons learned from the assessments and
2	other analysis under this subsection.
3	(14) Technology enhancements.—An anal-
4	ysis of current and developing ways to leverage exist-
5	ing and innovative technology to improve the effec-
6	tiveness of efforts to deploy microreactors to assist
7	with natural disaster response efforts.
8	(15) Using innovative tools to predict
9	NATURAL DISASTERS.—A description of how to uti-
10	lize innovative technology, such as artificial intel-
11	ligence and predictive meteorological tools, to pre-
12	pare for the utilization of microreactors before a
13	natural disaster.
14	(16) Floating nuclear barges.—An assess-
15	ment of how floating nuclear barges compare to
16	using portable microreactors, including—
17	(A) the advantages and disadvantages of
18	using a portable microreactor compared to a
19	floating nuclear barge; and
20	(B) an identification of scenarios during
21	which a floating nuclear barge would be pre-
22	ferred over a portable microreactor.
23	(d) Definitions.—In this section:

1	(1) Appropriate congressional commit-
2	TEES.—The term "appropriate congressional com-
3	mittees" means—
4	(A) the Committee on Energy and Com-
5	merce, the Committee on Armed Services, the
6	Committee on Oversight and Accountability,
7	and the Committee on Science, Space, and
8	Technology of the House of Representatives:
9	and
10	(B) the Committee on Energy and Natural
11	Resources, the Committee on Armed Services
12	the Committee on Environment and Public
13	Works, and the Committee on Commerce
14	Science, and Transportation of the Senate.
15	(2) Local government.—The term "local
16	government" has the meaning given such term in
17	section 102 of the Robert T. Stafford Disaster Relief
18	and Emergency Assistance Act (42 U.S.C. 5122).
19	(3) Microreactor.—The term "microreactor"
20	means a nuclear reactor, including a portable nu-
21	clear reactor, that has an electricity generating ca-
22	pacity of not more than 20 megawatts of thermal
23	energy.
24	(4) Natural disaster.—The term "natural
25	disaster" has the meaning given the term "Major

1	disaster" in section 102 of the Robert T. Stafford
2	Disaster Relief and Emergency Assistance Act (42
3	U.S.C. 5122), except that the term "natural dis-
4	aster" does not include a wildfire.
5	(5) Natural disaster response effort.—
6	The term "natural disaster response effort" means
7	a circumstance in which a State or local government
8	requests assistance under the Robert T. Stafford
9	Disaster Relief and Emergency Assistance Act (42
10	U.S.C. 5121 et seq.), including assistance to address
11	the loss of primary electrical capacity as a result of
12	a natural disaster.
13	(6) State.—The term "State" means a State
14	of the United States and the District of Columbia.